In matematica, in particolare nella teoria degli insiemi, un ricoprimento o copertura di un insieme è una famiglia di sottoinsiemi di tali che è contenuto nell'unione degli elementi di .
Un ricoprimento è finito se è costituito da un numero finito di insiemi. Un sottoricoprimento (o sottocopertura) di un ricoprimento di è una sottofamiglia che è ancora un ricoprimento di .
Un particolare tipo di ricoprimento è una partizione, ovvero un ricoprimento tale che ogni coppia di elementi di è disgiunta.
Topologia
Se ha anche una struttura di spazio topologico, un particolare tipo di ricoprimento sono i ricoprimenti aperti, ovvero i ricoprimenti formati da insiemi aperti. L'importanza di tali ricoprimenti è data dalla loro presenza nella definizione di spazio compatto: è compatto se ogni ricoprimento aperto ammette un sottoricoprimento finito. Varianti di questa definizione portano ai concetti di spazio paracompatto e di spazio di Lindelöf.
Bibliografia
- Edoardo Sernesi, Geometria 2, Torino, Bollati Boringhieri, 1994, ISBN 978-88-339-5548-3.
Voci correlate
- Partizione (teoria degli insiemi)
- Spazio compatto
- Atlante (topologia)
- Nerbo (matematica)
wikipedia, wiki, libro, libri, biblioteca, articolo, lettura, download, scarica, gratuito, download gratuito, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, immagine, musica, canzone, film, libro, gioco, giochi, mobile, telefono, Android, iOS, Apple, cellulare, Samsung, iPhone, Xiomi, Xiaomi, Redmi, Honor, Oppo, Nokia, Sonya, MI, PC, Web, computer