In matematica, la funzione tau sui positivi (o funzione dei divisori) è una funzione, solitamente indicata con o , che associa a ogni numero intero positivo il numero dei suoi divisori, inclusi uno e il numero stesso.
La funzione vale per , vale per tutti i numeri primi e ha valore maggiore di per tutti gli altri interi positivi. Inoltre la funzione è una funzione moltiplicativa.
Se (dove questa è la fattorizzazione di in numeri primi), allora vale la formula
Da questa scrittura appare evidente che la funzione è dispari se e solo se è un quadrato perfetto.
Segue una tabella dei valori di per i primi 20 numeri interi positivi:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
1 | 2 | 2 | 3 | 2 | 4 | 2 | 4 | 3 | 4 | |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
2 | 6 | 2 | 4 | 4 | 5 | 2 | 6 | 2 | 6 |
Proprietà
La funzione divisore appare nei coefficienti della serie di Dirichlet del quadrato della funzione zeta di Riemann:
Inoltre, costituisce un caso particolare della funzione sigma, in quanto si ha . In particolare, soddisfa la seguente identità di Lambert:
Codice
In C
int tau (int N){ //la funzione riceve un numero N e restituisce il numero dei suoi divisori (inclusi 1 e N) int i, cont=0; if( N < 1) return 0; //per N non positivo, restituisce zero for(i = 1 ; i <= N; i++) if( !(N%i) ) cont++; return cont; }
Voci correlate
- Funzione sigma sui positivi
wikipedia, wiki, libro, libri, biblioteca, articolo, lettura, download, scarica, gratuito, download gratuito, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, immagine, musica, canzone, film, libro, gioco, giochi, mobile, telefono, Android, iOS, Apple, cellulare, Samsung, iPhone, Xiomi, Xiaomi, Redmi, Honor, Oppo, Nokia, Sonya, MI, PC, Web, computer