La funzione enumerativa dei primi o funzione pi greco sui positivi associa ad ogni numero positivo il numero dei numeri primi non superiori ad , valore che si denota usualmente con .
Come successione di interi essa viene presentata nella OEIS in corrispondenza della sigla A000720.
Primi valori
I primi valori assunti dalla funzione in corrispondenza degli interi sono i seguenti:
+1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | +10 | +11 | +12 | +13 | +14 | +15 | +16 | +17 | +18 | +19 | +20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0+ | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 7 | 7 | 8 | 8 |
20+ | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 10 | 10 | 11 | 11 | 11 | 11 | 11 | 11 | 12 | 12 | 12 | 12 |
40+ | 13 | 13 | 14 | 14 | 14 | 14 | 15 | 15 | 15 | 15 | 15 | 15 | 16 | 16 | 16 | 16 | 16 | 16 | 17 | 17 |
60+ | 18 | 18 | 18 | 18 | 18 | 18 | 19 | 19 | 19 | 19 | 20 | 20 | 21 | 21 | 21 | 21 | 21 | 21 | 22 | 22 |
80+ | 22 | 22 | 23 | 23 | 23 | 23 | 23 | 23 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 25 | 25 | 25 | 25 |
Stime asintotiche
Lo studio dell'asintotica di costituisce uno degli argomenti principali della teoria dei numeri analitica. Nel 1896, Hadamard e de la Vallée Poussin dimostrarono che
dove è il logaritmo integrale, confermando quanto ipotizzato da Legendre e Gauss. L'ipotesi di Riemann predice che valga una versione più precisa di tale risultato:
Voci correlate
- Teorema dei numeri primi
- Teoria analitica dei numeri
- Funzione zeta di Riemann
Altri progetti
- Wikimedia Commons contiene immagini o altri file su Funzione enumerativa dei primi
Collegamenti esterni
- (EN) Eric W. Weisstein, Funzione enumerativa dei primi, su MathWorld, Wolfram Research.
wikipedia, wiki, libro, libri, biblioteca, articolo, lettura, download, scarica, gratuito, download gratuito, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, immagine, musica, canzone, film, libro, gioco, giochi, mobile, telefono, Android, iOS, Apple, cellulare, Samsung, iPhone, Xiomi, Xiaomi, Redmi, Honor, Oppo, Nokia, Sonya, MI, PC, Web, computer